 
          38
        
        
          Однако для реализации первого проекта потребуются дополнительные ин-
        
        
          вестиции
        
        
          ∆
        
        
          И = И
        
        
          01
        
        
          – И
        
        
          02
        
        
          = 1000 – 800 = 200 тыс. руб.
        
        
          Отсюда возникает неопределенность в целесообразности дополнительных
        
        
          инвестиций, которые потребуются при первом варианте. Решение рассматри-
        
        
          ваемой задачи зависит от способов инвестирования проектов (привлечение за-
        
        
          емных средств, использование собственных средств и т.д.). При этом нужно
        
        
          обеспечить сопоставимость альтернатив по инвестициям.
        
        
          Рассмотрим третью ситуацию, когда сравниваются проекты, имеющие раз-
        
        
          личные сроки реализации и разные величины инвестиций. В данном случае
        
        
          может возникнуть необходимость обеспечения сопоставимости альтернатив как
        
        
          по длительности, так и по инвестициям. Рассмотрим ситуацию, когда
        
        
          
            Т
          
        
        
          1
        
        
          ≠
        
        
          
            Т
          
        
        
          2
        
        
          ,
        
        
          И
        
        
          01
        
        
          ≠
        
        
          И
        
        
          02
        
        
          , т.е. проекты имеют разные сроки выполнения и разные начальные ин-
        
        
          вестиции, при этом экономические эффекты проектов отличаются по величине,
        
        
          т.е. Э
        
        
          Σ
        
        
          1
        
        
          ≠
        
        
          Э
        
        
          Σ
        
        
          2
        
        
          . Если выполняется условие Э
        
        
          Σ
        
        
          1
        
        
          >
        
        
          Э
        
        
          Σ
        
        
          2
        
        
          , предпочтение следует отдать
        
        
          первому варианту. При Э
        
        
          Σ
        
        
          1
        
        
          <
        
        
          Э
        
        
          Σ
        
        
          2
        
        
          более эффективным считается второй вариант.
        
        
          Однако этот вывод сделан без учета сопоставимости вариантов. В зависимости
        
        
          от решаемых задач может возникнуть необходимость приведения альтернатив к
        
        
          сопоставимому виду по полезному результату или по затратам.
        
        
          Предположим, что требуется обеспечить сопоставимость проектов по по-
        
        
          лезному результату (например, по величине валового дохода, техническому
        
        
          уровню изделий и т.п.).
        
        
          Если окажется, что
        
        
          
            R
          
        
        
          Σ
        
        
          
            i
          
        
        
          ≠
        
        
          
            R
          
        
        
          Σ
        
        
          
            j
          
        
        
          ≠
        
        
          
            R
          
        
        
          
            T
          
        
        
          
            ,
          
        
        
          где
        
        
          
            R
          
        
        
          
            т
          
        
        
          – требуемая величина полезного результата, то несмотря на то, что
        
        
          Э
        
        
          Σ
        
        
          1
        
        
          >
        
        
          Э
        
        
          Σ
        
        
          2
        
        
          , нельзя отдать предпочтение первому варианту.
        
        
          
            Пример 2.2.
          
        
        
          Производится сравнительная оценка эффективности двух ва-
        
        
          риантов теплоснабжения. В качестве указанных вариантов может быть центра-