Моделирование в MATLAB/Simulink и SCILAB/Scicos - page 230

228
Пример 24.6.
Вычислить
)(
x f
в точках 0, 1, 2, 3 для
( ) (
)
x
x xf
532
+ + =
.
-->function f=my(x), f=(x+2)^3+5*x, endfunction;
-->v=0:3;
-->numdiff(my,v)
ans =
17. 0. 0. 0.
0. 32. 0. 0.
0. 0. 52.999999 0.
0. 0. 0. 80.000002
Пример
24.7.
Задана
функция
многих
переменных
3
2
1
3
2 1
3 2 1
) , , (
xx xx xxxy
x
+ =
. Вычислить
3
2
1
,
,
dx
dy
dx
dy
dx
dy
в точке (1, 2, 3).
Решение:
-->function [Y]=f(X), Y=X(1)*X(2)^X(3)+(X(1)^2)*X(3),endfunction
-->X=[1 2 3];
-->numdiff(f,X)
ans =
14. 12. 6.5451775
-->function [Y]=f1(X),
-->Y(1)=X(2)^X(3)+2*X(1)*X(3),
-->Y(2)=X(1)*X(3)*X(2)^(X(3)-1),
-->Y(3)=X(1)*(X(2)^X(3))*(log(X(2)))+X(1)^2,endfunction
-->f1(X)
ans =
14.
12.
6.5451774
1...,220,221,222,223,224,225,226,227,228,229 231,232,233,234,235,236,237,238,239,240,...286
Powered by FlippingBook