Моделирование в MATLAB/Simulink и SCILAB/Scicos - page 85

83
результаты интегрирования с накоплением для каждого столбца
матрицы
Y
;
cumtrapz
(
X
,
Y
) – выполняет интегрирование с накоплением от
Y
по
переменной
X
, используя метод трапеций.
X
и
Y
должны быть
векторами одной и той же длины или
X
должен быть вектором-
столбцом, a
Y
– матрицей;
cumtrapz
(...,
dim
) – выполняет интегрирование с накоплением
элементов по размерности, точно определенной скаляром
dim
. Длина
вектора
X
должна быть равна
size
(
Y
,
dim
).
Например,
cumtrapz(y)
ans=
0 1.5000 4.0000 7.5000
Y=magic(4)
Y =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
Z= cumtrapz(Y,1)
Z =
0 0 0 0
10.5000 6.5000 6.5000 10.5000
17.5000 15.5000 14.5000 20.5000
24.0000 26.0000 25.0000 27.0000
6. 2. Интегрирование по квадратуре
Приведенные ниже функции осуществляют интегрирование и двойное
интегрирование, используя квадратурную
формулу Симпсона
или
метод
Гаусса-Лобатто
. Квадратура – численный метод нахождения площади под
графиком функции.
В приведенных ниже формулах подынтегральное выражение
fun
обычно
задается в форме дескриптора функции, поэтому с дидактическими целями
используем нотацию @
fun
.
Функции
quad
и
quadl
используют два различных алгоритма квадратуры
для вычисления определенного интеграла. Функция
quad
выполняет
интегрирование по методу низкого порядка, используя рекурсивное правило
Симпсона. Но она может быть более эффективной при негладких
подынтегральных функциях или при низкой требуемой точности вычислений.
Функция
quadl
(квадратура Лобатто) использует адаптивное правило
квадратуры Гаусса-Лобатто очень высокого порядка. Устаревшая функция
quad
8 выполняла интегрирование, используя квадратурные формулы Ньютона-
Котеса 8-го порядка.
1...,75,76,77,78,79,80,81,82,83,84 86,87,88,89,90,91,92,93,94,95,...286
Powered by FlippingBook