

Многопрофильная инженерная олимпиада «Звезда» «Техника и технологии наземного транспорта»

7-9 классы

Заключительный этап

2021-2022

Задача 1 (15 баллов)

Семья едет на своей машине на дачу. Легковой автомобиль движется по дороге со скоростью 60 км/час. Известно, что расход топлива автомобиля (Ga) в таких условиях составляет 12 кг/час. Сколько потребуется топлива (Qa) для поездки на дачу, если она расположена в 40 км от города?

Задача 2 (20 баллов)

Про легковой автомобиль известно, что его трансмиссия имеет передаточное число i = 4,2, а радиус качения колеса $R\kappa = 0,33$ м. Сколько оборотов сделает коленчатый вал двигателя, если автомобиль проедет путь (Sa), равный 0,5 км?

Задача 3 (25 баллов)

Легковой автомобиль движется по дороге с постоянной скоростью. Дорога имеет коэффициент сопротивления качению f = 0.016. Как надо изменить вес автомобиля, чтобы он мог двигаться с той же скоростью по дороге, имеющей коэффициент сопротивления качению f = 0.027? Двигатель автомобиля в обоих случаях развивает одну и ту же мощность.

Задача 4 (25 баллов)

Определите, как изменится мощность, необходимая для преодоления сопротивления воздуха, если скорость автомобиля увеличится с 50 до 63 км/час.

Задача 5 (15 баллов)

При движении автомобиля, имеющего двигатель мощностью 125 кВт, потери в трансмиссии составляют 15 кВт. Определите КПД трансмиссии автомобиля.

Пояснение к задачам

1. Из теории автомобиля известно, что мощность двигателя, расходуемая на преодоление силы сопротивления качению, определяется по формуле: $N_f = P_f V_a = G_a f \cos \alpha$, (1) где N_f — мощность двигателя, расходуемая на преодоление силы сопротивления качению; P_f — сила сопротивления качению; V_a — скорость автомобиля; G_a — вес автомобиля; f — коэффициент сопротивления качению; f — угол подъема дороги.

Мощность двигателя, расходуемая на преодоление силы сопротивления воздуха, определяется по формуле: $N_w = P_w V_a = k F_a V_a^3$, (2) где N_w — мощность двигателя, расходуемая на преодоление силы сопротивления воздуха; P_w — сила сопротивления воздуха; V_a — скорость автомобиля; k — коэффициент обтекаемости автомобиля; F_a — площадь поперечного сечения автомобиля.

- 2. Коэффициент полезного действия трансмиссии: $\eta_{\rm rp} = \frac{N_k}{N_{\partial \theta}}$, (3) где $\eta_{\rm rp}$ коэффициент полезного действия трансмиссии; N_k мощность на колесах автомобиля; $N_{\rm дв}$ мощность двигателя.
- 3. Передаточное число трансмиссии можно определить через выражение: $i_{\rm rp} = \frac{w_1}{w_2}$, где: $i_{\rm rp}$ передаточное число трансмиссии; w_1 угловая скорость ведущего вала (коленчатого вала двигателя); w_2 угловая скорость ведомого вала (колеса).

Не забывайте приводить все исходные данные к единой системе размерности.

Многопрофильная инженерная олимпиада «Звезда» «Техника и технологии наземного транспорта»

10-11 классы

Заключительный этап

2021-2022

Задача 1 (15 баллов)

Автомобиль движется по улицам города со скоростью $V_a = 47$ км/ч. Число оборотов коленчатого вала двигателя ($n_{дв}$) при этом, согласно показателям тахометра, равно 2000 об/мин. Известно, что передаточное число трансмиссии ($i_{тр}$) равно 6,67.

Определите радиус качения ведущего колеса автомобиля ($R_{\text{вк}}$).

Задача 2 (20 баллов)

При каком угле подъема дороги сила сопротивление качению автомобиля будет равна силе сопротивления подъему автомобиля?

Задача 3 (15 баллов)

Автомобиль движется по загородному шоссе со скоростью $V_a = 90$ км/ч. Частота вращения коленчатого вала двигателя, согласно показаниям тахометра, составляет $n_{\text{дв}} = 3200$ об/мин. Известно, что на автомобиле установлены колеса, имеющие радиус качения ($R_{\text{вк}}$) 0,38 м. Определите передаточное число трансмиссии автомобиля.

Задача 4 (30 баллов)

Мощность, затрачиваемая карьерным самосвалом массой $48\,000\,\mathrm{kr}$ на преодоление силы сопротивления качению при движении по горизонтальной дороге со скоростью $V_a=18\,\mathrm{km/v}$, равна $N_\kappa=82,4\,\mathrm{kBt}$. Определите угол склона, при котором сила дорожного сопротивления будет равна нулю.

Задача 5 (20 баллов)

Легковой автомобиль массой 1040 кг на загородной дороге преодолевает подъем на скорости 72 км/ч. Известно, что на преодоление подъема автомобиль затрачивает мощность 16,3 кВт. Определите угол подъема дороги, который преодолевает автомобиль.

Пояснения к задачам

Из теории автомобиля известно:

1. Сила дорожного сопротивления определяется из выражения: $P_{\psi} = P_f \pm P_{\alpha}$, (1) где P_{ψ} — сила дорожного сопротивления движению автомобиля; P_f — сила сопротивления качению автомобиля; P_{α} — сила сопротивления подъему автомобиля.

Знак «+» перед силой сопротивления подъему автомобиля берется в тех случаях, когда автомобиль движется на подъеме, знак «-» – когда автомобиль движется на спуске.

2. Сопротивление качению автомобиля определяется из выражения: $P_f = G_a f \cos \alpha$, (2) где P_f — сила сопротивления качению автомобиля; G_a — вес автомобиля; f — коэффициент сопротивления качению; α — угол подъема дороги.

- 3. Сила сопротивления подъему автомобиля определяется из выражения: $P_{\alpha} = G_{a} \sin \alpha$, (3) где P_{α} сила сопротивления подъему автомобиля; G_{a} вес автомобиля; α угол подъема дороги.
- 4. Мощность, затрачиваемая на преодоление силы сопротивления качению автомобиля, определяется из выражения: $N_f = P_f V_a$, (4) где N_f мощность, затрачиваемая на преодоление силы сопротивления качению автомобиля; P_f сила сопротивления качению автомобиля; V_a скорость движения автомобиля.
- 5. Мощность, расходуемая на преодоление автомобилем подъема, определяется из выражения: $N_{\alpha} = P_{\alpha}V_{a}$, (4) где N_{α} мощность, расходуемая на преодоление автомобилем подъема; P_{α} сила сопротивления подъему автомобиля; V_{a} скорость движения автомобиля.

Не забывайте приводить все исходные данные задач к единой системе размерности.